Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Modeling Vacuum Bellows Soft Pneumatic Actuators with Optimal Mechanical Performance
 
conference paper

Modeling Vacuum Bellows Soft Pneumatic Actuators with Optimal Mechanical Performance

Felt, Wyatt Marshall  
•
Robertson, Matthew Aaron  
•
Paik, Jamie  
2018
2018 IEEE International Conference on Soft Robotics (RoboSoft)
Soft Robotics (RoboSoft 2018), 2018 IEEE-RAS International Conference on

This paper presents the concept and model of "Vacuum Bellows," a cylindrical membrane-reinforced contractile vacuum soft pneumatic actuator (V-SPAs). These actuators consist of a tubular membrane connected to a series of interior rigid rings periodically spaced along its length. Our model shows how the rings can be spaced to achieve a desired actuator force profile. For example, the contraction ratio can be maximized by spacing the rings one diameter apart inside the tube. The work output of the actuator can be concentrated in the initial portion of the stroke by increasing the ring spacing. And, usefully, an approximately constant force-to-pressure relationship can be created by spacing the rings a fraction of a diameter apart. Our experimental results highlight the utility of the model and some practical considerations for actuator fabrication and use. The experimental results demonstrate how the ring spacing can be used to achieve high peak forces per unit pressure (three times greater than an equivalent-diameter piston achieved experimentally) or large contractions (achieved contraction to 30% of the extended length). Our model suggests that this performance can be improved with improved fabrication techniques.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés