Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Stabilized finite elements on anisotropic meshes: A priori error estimates for the advection-diffusion and the Stokes problems
 
research article

Stabilized finite elements on anisotropic meshes: A priori error estimates for the advection-diffusion and the Stokes problems

Micheletti, S.
•
Perotto, S.
•
Picasso, M.  
2003
Siam Journal on Numerical Analysis

Stabilized finite elements on strongly anisotropic meshes are considered. The design of the stability coefficients is addressed for both the advection-diffusion and the Stokes problems when using continuous piecewise linear finite elements on triangles. Using the polar decomposition of the Jacobian of the a. ne mapping from the reference triangle to the current one, K, and from a priori error estimates, a new definition of the stability coefficients is proposed. Our analysis shows that these coefficients do not depend on the element diameter h(K) but on a characteristic length associated with K via the polar decomposition. A numerical assessment of the theoretical analysis is carried out.

  • Details
  • Metrics
Type
research article
DOI
10.1137/S0036142902403759
Web of Science ID

WOS:000185130500016

Author(s)
Micheletti, S.
Perotto, S.
Picasso, M.  
Date Issued

2003

Published in
Siam Journal on Numerical Analysis
Volume

41

Issue

3

Start page

1131

End page

1162

Subjects

anisotropic error estimates

•

advection-diffusion problems

•

Stokes

•

problem

•

stabilized finite elements

•

COMPUTATIONAL FLUID-DYNAMICS

•

LEAST-SQUARES METHODS

•

INCOMPRESSIBLE

•

FLOWS

•

EQUATIONS

•

FORMULATION

•

APPROXIMATION

•

REFINEMENT

Note

Politecn Milan, MOX Modeling & Sci Comp, Dipartimento Matemat F Brioschi, I-20133 Milan, Italy. Ecole Polytech Fed Lausanne, Inst Math, CH-1015 Lausanne, Switzerland. Micheletti, S, Politecn Milan, MOX Modeling & Sci Comp, Dipartimento Matemat F Brioschi, Via Bonardi 9, I-20133 Milan, Italy.

ISI Document Delivery No.: 718DU

Cited Reference Count: 41

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
ASN  
Available on Infoscience
August 24, 2006
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/233729
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés