Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Last-touch correlated data streaming
 
conference paper

Last-touch correlated data streaming

Ferdman, Michael
•
Falsafi, Babak  
2007
Proceedings of the International Symposium on Performance Analysis of Systems and Software

Recent research advocates address-correlating predictors to identify cache block addresses for prefetch. Unfortunately, address-correlating predictors require correlation data storage proportional in size to a program's active memory footprint. As a result, current proposals for this class of predictor are either limited in coverage due to constrained on-chip storage requirements or limited in prediction lookaheaddue to long off-chip correlation data lookup. In this paper, we propose Last-Touch Correlated Data Streaming (LT-cords), a practical address-correlating predictor. The key idea of LT-cords is to record correlation data off chip in the order they will be used and stream them into a practicallysized on-chip table shortly before they are needed, thereby obviating the need for scalable on-chip tables and enabling low-latency lookup. We use cycle-accurate simulation of an 8-way out-of-order superscalar processor to show that: (1) LT-cords with 214KB of on-chip storage can achieve the same coverage as a last-touch predictor with unlimited storage, without sacrificing predictor lookahead, and (2) LT-cords improves performance by 60% on average and 385% at best in the benchmarks studied. © 2007 IEEE.

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés