Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Computational Analysis of the Mutual Constraints between Single‐Cell Growth and Division Control Models
 
research article

Computational Analysis of the Mutual Constraints between Single‐Cell Growth and Division Control Models

Vuaridel‐Thurre, Gaëlle  
•
Vuaridel, Ambroise R.
•
Dhar, Neeraj
Show more
December 16, 2019
Advanced Biosystems

Three models of division control are proposed to achieve cell size homeostasis: sizer, timer, and adder. However, few published studies of division control take into account the dynamics of single‐cell growth and most assume that single‐cell growth is exponential. Here, computational simulations considering exponential, linear, and bilinear growth models are performed. These simulations confirm that a timer division control model alone cannot lead to size homeostasis if the single‐cell growth model is exponential. Furthermore, timer and adder division control models cannot be distinguished if the single‐cell growth model is linear. Models of division control cannot be easily differentiated by analysis of average cell behavior because the birth sizes of the majority of cells are close to the population average. However, the differences between division control models are amplified in outlier cells whose birth size is far from the average. A method is introduced for vector field analysis of the speed of convergence of outlier lineages toward the steady‐state birth size, which can help to distinguish between division control models and single‐cell growth models.

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés