Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Shape constrained splines as transparent black-box models for bioprocess modeling
 
research article

Shape constrained splines as transparent black-box models for bioprocess modeling

Masic, Alma
•
Srinivasan, Sriniketh  
•
Billeter, Julien  
Show more
2017
Computers & Chemical Engineering

Empirical model identification for biological systems is a challenging task due to the combined effects of complex interactions, nonlinear effects, and lack of specific measurements. In this context, several researchers have provided tools for experimental design, model structure selection, and optimal parameter estimation, often packaged together in iterative model identification schemes. Still, one often has to rely on a limited number of candidate rate laws such as Contois, Haldane, Monod, Moser, and Tessier. In this work, we propose to use shape-constrained spline functions as a way to reduce the number of candidate rate laws to be considered in a model identification study, while retaining or even expanding the explanatory power in comparison to conventional sets of candidate rate laws. The shape-constrained rate laws exhibit the flexibility of typical black-box models, while offering a transparent interpretation akin to conventionally applied rate laws such as Monod and Haldane. In addition, the shape-constrained spline models lead to limited extrapolation errors despite the large number of parameters. (C) 2017 Elsevier Ltd. All rights reserved.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés