Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Properties of convex optimal power flow model based on power loss relaxation
 
research article

Properties of convex optimal power flow model based on power loss relaxation

Yuan, Zhao  
•
Paolone, Mario  
September 1, 2020
Electric Power Systems Research

We derive the branch ampacity constraint associated to power losses for the convex optimal power flow (OPF) model based on the branch flow formulation. The branch ampacity constraint derivation is motivated by the physical interpretation of the transmission line H-model and practical engineering considerations. We rigorously prove and derive: (i) the loop constraint of voltage phase angle, required to make the branch flow model valid for meshed power networks, is a relaxation of the original nonconvex alternating current optimal power flow (o-ACOPF) model; (ii) the necessary conditions to recover a feasible solution of the o-ACOPF model from the optimal solution of the convex second-order cone ACOPF (SOC-ACOPF) model; (iii) the expression of the global optimal solution of the o-ACOPF model providing that the relaxation of the SOC-ACOPF model is tight; (iv) the (parametric) optimal value function of the o-ACOPF or SOC-ACOPF model is monotonic with regarding to the power loads if the objective function is monotonic with regarding to the nodal power generations; (v) tight solutions of the SOC-ACOPF model always exist when the power loads are sufficiently large. Numerical experiments using benchmark power networks to validate our findings and to compare with other convex OPF models, are given and discussed.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés