Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. On Satisfiability Modulo Computable Functions
 
Loading...
Thumbnail Image
report

On Satisfiability Modulo Computable Functions

Suter, Philippe  
•
Köksal, Ali Sinan
•
Kuncak, Viktor  
2010

We present a semi-decision procedure for checking satisfiability of formulas in the language of algebraic data types and integer linear arithmetic extended with user-defined terminating recursive functions. Our procedure is designed to integrate into a DPLL(T) solver loop, using blocking clauses to control function definition unfolding. The procedure can check the faithfulness of candidate counterexamples using code execution. It is sound for proofs and counterexamples. Moreover, it is terminating and thus complete for many important classes of specifications: for satisfiable specifications, for specifications whose recursive functions are sufficiently surjective, and for functions annotated with inductive postconditions. We have implemented our system in Scala, building on top of the Z3 API and Z3's plugin mechanism. Our results show our approach to be superior in practice to the alternative of encoding recursive functions as quantified axioms. Using our system, we verified detailed correctness properties for functional data structure implementations, as well as Scala syntax tree manipulations. We have found our system to be fast for both finding counterexamples and finding proofs for inductively annotated specifications. Furthermore, it can quickly enumerate many test cases satisfying a given functional precondition, which can then be used to test both functional and imperative code. Thanks to our tool, many SMT solver clients, including verifiers and synthesizers, can benefit from the expressive power of recursive function definitions within formulas.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

OnSatisfiabilityModuloComputableFunctions_1.pdf

Access type

openaccess

Size

232.6 KB

Format

Adobe PDF

Checksum (MD5)

7ee0ccbc34098b07529ae60f44f9dc31

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés