Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Towards Surface-Correction of Deep-Tissue Blood Flow Dynamics with Massively Parallelized Diffuse Correlation Spectroscopy
 
conference paper

Towards Surface-Correction of Deep-Tissue Blood Flow Dynamics with Massively Parallelized Diffuse Correlation Spectroscopy

Kreiss, Lucas A.
•
Wu, Melissa
•
Wayne, Michael Alan  
Show more
Fellin, Tommaso
•
Čižmár, Tomáš
June 20, 2024
Neurophotonics II
SPIE Photonics Europe 2024

Diffuse Correlation Spectroscopy (DCS) allows the optical and label-free investigation of microvascular dynamics. Commonly, DCS is implemented with highly sensitive and ultra fast single-photon avalanche diodes (SPAD) for blood flow measurements from around 1-1.5cm deep inside tissue (source detector separation of 2.5-3 cm). In parallelized DCS (pDCS), we use arrays of multiple SPADs to boost the signal-to-noise ratio by averaging many independent DCS measurements. In this study, we explored the capabilities of an innovative, massively parallelized SPAD array with 500x500 single pixels for DCS for up to 250,000 parallel DCS measurements. We can show that this massively parallelized array enables viable blood flow measurements at 2cm depth (4cm source detector separation) in human subjects. Furthermore, we applied a dual detection strategy, where a secondary SPAD array probes the superficial blood flow simultaneously as a build-in reference measurement. In addition to our main results, we test and discuss methods to correct the deep flow measurement, by including simultaneously measured flow dynamics deep and superficial tissue layers via our novel dual-SPAD array measurement setup.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés