Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Refraction-Based Speed of Sound Estimation in Layered Media: an Angular Approach
 
research article

Refraction-Based Speed of Sound Estimation in Layered Media: an Angular Approach

Hériard-Dubreuil, Baptiste
•
Besson, Adrien
•
Wintzenrieth, Frédéric
Show more
2023
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control

Speed of sound estimation in ultrasound imaging is a growing modality with several clinical applications such as hepatic steatosis stages quantification. A key challenge for clinically-relevant speed of sound estimation is to obtain repeatable values independent from superficial tissues and available in real-time. Recent works have demonstrated the feasibility to achieve quantitative estimations of the local speed of sound in layered media. However, such techniques require a high computational power and exhibit instabilities. We present a novel speed of sound estimation technique based on an angular approach of ultrasound imaging in which plane-waves are considered in transmit and in receive. This change of paradigm allows us to rely on refraction properties of plane-waves to infer local speed of sound values directly from the angular raw-data. The proposed method robustly estimates the local speed of sound with only few ultrasound emissions and with a low computational complexity which makes it compatible with real-time imaging. Simulations and in vitro experimental results show that the proposed method outperforms state-of-the-art approaches with biases and standard deviations lower than 10m/s, 8 times less emissions and 1000 times lower computational time. Further in vivo experiments validate its performance for liver imaging.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

main.pdf

Type

Preprint

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

License Condition

copyright

Size

6.75 MB

Format

Adobe PDF

Checksum (MD5)

7908d67a3cbcb68c49733807d844ee91

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés