Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Residual-based a posteriori error estimation for contact problems approximated by Nitsche's method
 
research article

Residual-based a posteriori error estimation for contact problems approximated by Nitsche's method

Chouly, Franz
•
Fabre, Mathieu Jonathan  
•
Hild, Patrick
Show more
2018
IMA JOURNAL OF NUMERICAL ANALYSIS

We introduce a residual-based a posteriori error estimator for contact problems in two- and three-dimensional linear elasticity, discretized with linear and quadratic finite elements and Nitsche’s method. Efficiency and reliability of the estimator are proved under a saturation assumption. Numerical experiments illustrate the theoretical properties and the good performance of the estimator.

  • Files
  • Details
  • Metrics
Type
research article
DOI
10.1093/imanum/drx024
Web of Science ID

WOS:000440922300011

Author(s)
Chouly, Franz
Fabre, Mathieu Jonathan  
Hild, Patrick
Pousin, Jérôme
Renard, Yves
Date Issued

2018

Published in
IMA JOURNAL OF NUMERICAL ANALYSIS
Volume

38

Issue

2

Start page

921

End page

954

Note

National Licences

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
MNS  
Available on Infoscience
November 8, 2018
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/150876
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés