Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Low-temperature thermite reaction to form oxygen vacancies in metal-oxide semiconductors: A case study of photoelectrochemical cells
 
research article

Low-temperature thermite reaction to form oxygen vacancies in metal-oxide semiconductors: A case study of photoelectrochemical cells

Kim, Jeong Hun
•
Lee, Jin Uk
•
Zheng, Likai  
Show more
2025
Chem

The formation of oxygen vacancies (Vö) in n-type semiconductors is a key strategy for improving the performance of metal-oxide-based photoanodes. Whereas Vö has traditionally been created by gas- or liquid-phase treatments, here we report a solid-state reduction technique termed the “low-temperature thermite reaction” (LTTR), which is effective for various metal oxides and solid reductants. In the case of ZnFe2O4 (ZFO), the LTTR increases charge-carrier density and bulk charge-separation efficiency by ∼100-fold and 2∼4-fold, respectively, for ZFO with an Fe reductant relative to pristine ZFO. The photocurrent densities for sacrificial reagent and water oxidation (1.8 and 1.6 mA/cm2 at 1.23 VRHE, respectively) achieved here represent the highest values reported for ZFO photoanodes. Also, a ZFO-lead halide perovskite solar cell tandem water-splitting cell demonstrated an unbiased solar-to-hydrogen efficiency of 1.85%. The LTTR is applicable to large-area (25 cm2) photoanodes under ambient atmosphere. Thus, the LTTR could become a more effective and versatile technique than conventional ones.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés