Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Designing Intelligent Systems for Online Education: Open Challenges and Future Directions
 
conference paper

Designing Intelligent Systems for Online Education: Open Challenges and Future Directions

Dessì, Danilo
•
Käser, Tanja  
•
Marras, Mirko  
Show more
March 12, 2021
Proceedings of the First International Workshop on Enabling Data-Driven Decisions from Learning on the Web co-located with the 14th ACM International Conference on Web Search and Data Mining (WSDM 2021)
1st / 14th International Workshop on Enabling Data-Driven Decisions from Learning on the Web co-located with the 14th ACM International Conference on Web Search and Data Mining (WSDM 2021)

The design and delivering of platforms for online education is fostering increasingly intense research. Scaling up education online brings new emerging needs related with hardly manageable classes, overwhelming content alternatives, and academic dishonesty while interacting remotely, as examples. However, with the impressive progress of the data mining and machine learning fields, combined with the large amounts of learning-related data and high-performance computing, it has been possible to gain a deeper understanding of the nature of learning and teaching online. Methods at the analytical and algorithmic levels are constantly being developed and hybrid approaches are receiving an increasing attention. Recent methods are analyzing not only the online traces left by students a posteriori, but also the extent to which this data can be turned into actionable insights and models, to support the above needs in a computationally efficient, adaptive and timely way. In this paper, we present relevant open challenges lying at the intersection between the machine learning and educational communities, that need to be addressed to further develop the field of intelligent systems for online education. Several areas of research in this field are identified, such as data availability and sharing, time-wise and multi-modal data modelling, generalizability, fairness, explainability, interpretability, privacy, and ethics behind models delivered for supporting education. Practical challenges and recommendations for possible research directions are provided for each of them, paving the way for future advances in this field.

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés