Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. Controlling and Monitoring Intracellular Drug Delivery Using PHPMA-Based Polymer Nanomedicines
 
doctoral thesis

Controlling and Monitoring Intracellular Drug Delivery Using PHPMA-Based Polymer Nanomedicines

Battistella, Claudia  
2017

Polymer nanomedicine is an attractive approach for the delivery of anticancer drugs. Firstly designed to increase drug bioavailability, polymer conjugates and polymer nanoparticles have rapidly emerged in the field of cancer therapy after the discovery of the enhanced permeation and retention (EPR) effect. The leaky and disordered tumor neovascularization provides opportunities to guide the accumulation of polymer nanomedicines to the tumor tissue therefore enhancing therapy selectivity and reducing off-target-associated side effects. However, since many chemotherapeutics act on targets that are located in well-defined subcellular compartments, controlling the intracellular fate of polymer nanomedicines and/or their payload is another important factor that contributes to therapy efficiency. Polymer conjugates and polymer nanoparticles generally access the cell interior via endocytosis. The physiochemical and biochemical parameters that distinguish the endolysosomal compartments from the extracellular environment have been widely exploited to trigger intracellular drug release from the polymer carriers. Amongst a range of other polymers and polymer nanoparticles that have been investigated over the past 30 years, poly(N-(2-hydroxypropyl) methacrylamide) (PHPMA)-based conjugates have been extensively explored for the endolysosomal release of anticancer drugs. While the modern polymer chemistry toolbox provides many opportunities to tailor the molecular weight and functionality of PHPMA and to introduce features that allow the polymer to respond to the different endolysosomal environments, the development of tools and methods to monitor these processes is also crucial for the future development of advanced delivery systems. The aim of this Thesis is to design dual-functional PHPMA polymers that offer the possibility to control the endolysosomal release of anticancer drug combinations as well as to monitor the PHPMA endolysosomal trafficking. Chapter 1 of this Thesis provides an overview of the different approaches that have been described in literature to control and monitor the intracellular delivery of polymer nanomedicines. Chapter 2 describes a synthetic approach to prepare alpha- and alpha,omega-fluorine labeled pentafluorophenyl methacrylate (PPFMA) polymers via reversible addition fragmentation chain transfer (RAFT) polymerization. In Chapter 3 post-polymerization modification of the alpha-fluorine labeled PPFMA precursor will be used to prepare a series of PHPMA conjugates carrying either the anticancer drug doxorubicin (Dox) or the P-glycoprotein inhibitor zosuquidar (Zos) or both drugs at the polymer side chains. The ability of the conjugates to overcome doxorubicin efflux and therefore reverse P-gp-mediated multidrug resistance in resistant ovarian carcinoma cells will be assessed. Finally, Chapter 4 will study the cellular internalization and endolysosomal trafficking of PHPMA. The synthesis of a dual-labeled PHPMA polymer containing both a fluorescent as well as a fluorinated label will be used for flow cytometry and confocal fluorescence microscopy studies and to demonstrate the potential of nanoscale secondary ion mass spectrometry (NanoSIMS) to map and localize fluorine-containing polymers in cells.

  • Files
  • Details
  • Metrics
Type
doctoral thesis
DOI
10.5075/epfl-thesis-7669
Author(s)
Battistella, Claudia  
Advisors
Klok, Harm-Anton  
Jury

Prof. Anna Fontcuberta i Morral (présidente) ; Prof. Harm-Anton Klok (directeur de thèse) ; Prof. Anders Meibom, Dr Matthias Barz, Dr Julien Nicolas (rapporteurs)

Date Issued

2017

Publisher

EPFL

Publisher place

Lausanne

Public defense year

2017-04-21

Thesis number

7669

Total of pages

211

Subjects

Polymer nanomedicine

•

PHPMA-conjugates

•

PPFMA

•

post-polymerization modification

•

Multidrug resistance

•

Intracellular trafficking

•

Co-localization studies

•

NanoSIMS

EPFL units
LP  
Faculty
STI  
School
IMX  
Doctoral School
EDMX  
Available on Infoscience
April 19, 2017
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/136543
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés