Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Radiation Performance of Highly Miniaturized Implantable Devices
 
conference paper

Radiation Performance of Highly Miniaturized Implantable Devices

Nikolayev, Denys  
•
Zhadobov, Maxim
•
Joseph, Wout
Show more
January 1, 2019
2019 49Th European Microwave Conference (Eumc)
49th European Microwave Conference (EuMC)

Miniature wireless implantable bioelectronics provide powerful capabilities for biotelemetry, therapeutics, and neural interfacing. These technologies rely on antennas to communicate with external receivers, yet existing systems suffer from poor radiation performance. We address this issue by studying the through-tissue propagation, deriving the optimal frequency range, and obtaining the maximum achievable far-field radiation efficiency. Three problem formulations are considered with increasing complexity and anatomical realism. Polarization effects of TM and TE modes are investigated using an infinitesimal magnetic dipole and a magnetic current sources, respectively. The optimal operating frequency is found within the [10(8), 3 x 10(9)]-Hz range and can be roughly approximated as f approximate to 2.2 x 10(7)/d for deep implantation (i.e. d greater than or similar to 2 cm). Considering the implantation depth, the operating frequency, the polarization, and the directivity, we show that about an order-of-magnitude efficiency improvement is achievable compared to existing devices.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés