Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Abeta protofibrils possess a stable core structure resistant to hydrogen exchange
 
research article

Abeta protofibrils possess a stable core structure resistant to hydrogen exchange

Kheterpal, Indu
•
Lashuel, Hilal A.  
•
Hartley, Dean M.
Show more
2003
Biochemistry

Protofibrils are transient structures observed during in vitro formation of mature amyloid fibrils and have been implicated as the toxic species responsible for cell dysfunction and neuronal loss in Alzheimer's disease (AD) and other protein aggregation diseases. To better understand the roles of protofibrils in amyloid assembly and Alzheimer's disease, we characterized secondary structural features of these heterogeneous and metastable assembly intermediates. We chromatographically isolated different size populations of protofibrils from amyloid assembly reactions of Abeta(1-40), both wild type and the Arctic variant associated with early onset familial AD, and exposed them to hydrogen-deuterium exchange analysis monitored by mass spectrometry (HX-MS). We show that HX-MS can distinguish among unstructured monomer, protofibrils, and fibrils by their different protection patterns. We find that about 40% of the backbone amide hydrogens of Abeta protofibrils are highly resistant to exchange with deuterium even after 2 days of incubation in aqueous deuterated buffer, implying a very stable, presumably H-bonded, core structure. This is in contrast to mature amyloid fibrils, whose equally stable structure protects about 60% of the backbone amide hydrogens over the same time frame. We also find a surprising degree of specificity in amyloid assembly, in that wild type Abeta is preferentially excluded from both protofibrils and fibrils grown from an equimolar mixture of wild type and Arctic mutant peptides. These and other data are interpreted and discussed in terms of the role of protofibrils in fibril assembly and in disease.

  • Files
  • Details
  • Metrics
Type
research article
DOI
10.1021/bi0357816
PubMed ID

14640676

Author(s)
Kheterpal, Indu
Lashuel, Hilal A.  
Hartley, Dean M.
Walz, Thomas
Lansbury, Peter T.
Wetzel, Ronald
Date Issued

2003

Publisher

American Chemical Society

Published in
Biochemistry
Volume

42

Issue

48

Start page

14092

End page

8

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LMNN  
Available on Infoscience
October 28, 2009
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/43976
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés