Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Phosphorylation of synucleins by members of the Polo-like kinase family
 
research article

Phosphorylation of synucleins by members of the Polo-like kinase family

Mbefo, MK  
•
Paleologou, KE  
•
Boucharaba, Ahmed
Show more
2010
Journal of Biological Chemistry

Phosphorylation of alpha-synuclein (alpha-syn) at Ser-129 is a hallmark of Parkinson disease and related synucleinopathies. However, the identity of the natural kinases and phosphatases responsible for regulating alpha-syn phosphorylation remain unknown. Here we demonstrate that three closely related members of the human Polo-like kinase (PLK) family (PLK1, PLK2, and PLK3) phosphorylate alpha-syn and beta-syn specifically at Ser-129 and Ser-118, respectively. Unlike other kinases reported to partially phosphorylate alpha-syn at Ser-129 in vitro, phosphorylation by PLK2 and PLK3 is quantitative (>95% conversion). Only PLK1 and PLK3 phosphorylate beta-syn at Ser-118, whereas no phosphorylation of gamma-syn was detected by any of the four PLKs (PLK1 to -4). PLK-mediated phosphorylation was greatly reduced in an isolated C-terminal fragment (residues 103-140) of alpha-syn, suggesting substrate recognition via the N-terminal repeats and/or the non-amyloid component domain of alpha-syn. PLKs specifically co-localized with phosphorylated Ser-129 (Ser(P)-129) alpha-syn in various subcellular compartments (cytoplasm, nucleus, and membranes) of mammalian cell lines and primary neurons as well as in alpha-syn transgenic mice, especially cortical brain areas involved in synaptic plasticity. Furthermore, we report that the levels of PLK2 are significantly increased in brains of Alzheimer disease and Lewy body disease patients. Taken together, these results provide biochemical and in vivo evidence of alpha-syn and beta-syn phosphorylation by specific PLKs. Our results suggest a need for further studies to elucidate the potential role of PLK-syn interactions in the normal biology of these proteins as well as their involvement in the pathogenesis of Parkinson disease and other synucleinopathies.

  • Files
  • Details
  • Metrics
Type
research article
DOI
10.1074/jbc.M109.081950
Author(s)
Mbefo, MK  
•
Paleologou, KE  
•
Boucharaba, Ahmed
•
Oueslati, Abid  
•
Schell, Heinrich
•
Fournier, Margot  
•
Olschewski, Diana
•
Yin, Guowei
•
Zweckstetter, Markus
•
Masliah, Eliezer
Show more
Date Issued

2010

Publisher

American Society for Biochemistry and Molecular Biology

Published in
Journal of Biological Chemistry
Volume

285

Issue

4

Start page

2807

End page

2822

Subjects

synuclein

•

phosphorylation

•

polo like kinases

•

S129

•

aggregation

•

NMR

•

membrane

•

neurons

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LMNN  
Available on Infoscience
October 29, 2009
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/44018
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés