Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Optimizing Communication in HPF programs for Fine-Grain Distributed Shared Memory
 
conference paper

Optimizing Communication in HPF programs for Fine-Grain Distributed Shared Memory

Chandra, Satish
•
Larus, James R.
1997
Sixth ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming

Unlike compiler-generated message-passing code, the coherence mechanisms in shared-memory systems work equally well for regular and irregular programs. In many programs, however compile-time information about data accesses would permit data to be transferred more efficiently---if the underlying shared-memory system offered suitable primitives. This paper demonstrates that cooperation between a compiler and a memory coherence protocol can improve the performance of High Performance Fortran (HPF) programs running on fine-grain distributed shared memory system up to a factor of 2, while retaining the versatility and portability of shared memory. As a consequence, shared memory's performance becomes competitive with message passing for regular applications, while not affecting (or in some cases, even improving) its large advantage for irregular codes. This paper describes the design of our implementation and reports experimental results.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés