Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Continuous compensation of the phase mismatch by using temperature gradients for second harmonic generation
 
research article

Continuous compensation of the phase mismatch by using temperature gradients for second harmonic generation

Dansette, Pierre-Marc
•
Eremchev, Maksim  
•
Michailovas, Andrejus
April 1, 2021
Optics Communications

The second harmonic of an infrared laser generated by frequency doubling in a nonlinear crystal can be adversely affected by group delay dispersion applied to the fundamental radiation. Yet large amounts of group delay dispersion can be advantageous when using periodically poled crystals with a linearly chirped period. We propose to achieve the same effects with continuous variation of the phase mismatch in the propagation direction, by applying a temperature gradient to a lithium triborate crystal. Advantageously the temperature gradient can be adjusted depending on the desired results. We demonstrate, through both simulation and experiment, an improvement in not only second harmonic conversion efficiency and beam quality, but also that the second harmonic duration and is bandwidth can be controlled with the temperature gradient.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés