Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Student works
  4. Mathematical modeling and numerical simulation of excitation-contraction phenomena in the heart
 
master thesis

Mathematical modeling and numerical simulation of excitation-contraction phenomena in the heart

De Oliveira Vilaca, Luis Miguel
2013

In this Master thesis we aim at studying some physiological and computational aspects of the excitation-contraction mechanisms in the heart muscle. This phenomenon exhibits many complexities at different spatio-temporal scales. The relevance and applicability of several recent phenomenological and physiologically detailed ionic models will be assessed. The choice of the treated models is based on an equilibrium between results that manage to reproduce correctly the complexity of the cardiac electrophysiology and a weak computational cost in order to solve the large set of ODEs which describe the dynamics of that ionic model. The preferred models include a large part of the more recent electrophysiological discoveries and understandings (e.g. L-type calcium and ryanodine channels) in order to reproduce at best the electrical conduction in the human cardiac tissue based on different experimental or computational measurements. According to these previous remarks, we will perform a thorough testing and quantitative comparison of these models and mechanical activation mechanisms in the framework of the LifeV finite element library. In a second step, a recent model for the description of crossbridge dynamics will be implemented. The importance of using good ionic models makes sense to identify correctly the possible influence on the muscle mechanics activation, which enable the heart to pump blood throughout the entire circulatory system.

  • Files
  • Details
  • Metrics
Type
master thesis
Author(s)
De Oliveira Vilaca, Luis Miguel
Advisors
Quarteroni, Alfio  
•
Ruiz-Baier, Ricardo  
Date Issued

2013

Subjects

electrophysiology

•

heart modeling

•

ionic models

•

finite element method

Note

Master project; Master of Science in Molecular & Biological Chemistry. Offered in consultation at the EPFL library.

Written at

EPFL

EPFL units
SCGC  
CMCS  
Section
CGC-S  
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/104226
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés