Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Scenario Reduction Revisited: Fundamental Limits and Guarantees
 
research article

Scenario Reduction Revisited: Fundamental Limits and Guarantees

Rujeerapaiboon, Napat  
•
Schindler, Kilian  
•
Kuhn, Daniel  
Show more
2022
Mathematical Programming

The goal of scenario reduction is to approximate a given discrete distribution with another discrete distribution that has fewer atoms. We distinguish continuous scenario reduction, where the new atoms may be chosen freely, and discrete scenario reduction, where the new atoms must be chosen from among the existing ones. Using the Wasserstein distance as measure of proximity between distributions, we identify those n-point distributions on the unit ball that are least susceptible to scenario reduction, i.e., that have maximum Wasserstein distance to their closest m-point distributions for some prescribed m < n. We also provide sharp bounds on the added benefit of continuous over discrete scenario reduction. Finally, to our best knowledge, we propose the first polynomial-time constant-factor approximations for both discrete and continuous scenario reduction as well as the first exact exponential-time algorithms for continuous scenario reduction.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés