Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Surface Plasmons on Graphene Sheets: Effect of Spatial Dispersion and Magnetostatic Bias
 
conference paper

Surface Plasmons on Graphene Sheets: Effect of Spatial Dispersion and Magnetostatic Bias

Gomez-Diaz, J. S.
•
Mosig, Juan Ramon  
•
Perruisseau-Carrier, Julien  
2013
2013 7Th European Conference On Antennas And Propagation (Eucap)
7th European Conference on Antennas and Propagation (EuCAP)

We study the characteristics of surface plasmons propagating along graphene sheets, focusing on the effect of spatial dispersion and applied magnetostatic bias, and taking into account the influence of the surrounding media, applied electrostatic biasing field, and graphene intrinsic features. The proposed technique relates the graphene tensorial conductivity with the admittances of a rigorous equivalent circuit, allowing to obtain closed-form dispersion relations for the supported modes. Results demonstrate that spatial dispersion can dramatically modify the characteristics of the propagating plasmons, even in the low THz band, increasing losses and reducing mode confinement. On the other hand, the application of magnetostatic biasing field leads to extreme mode compression, as compared to usual plasmons on non magnetically-biased graphene or noble metals. These features could lead to enhanced resolution in sensing applications and extreme device miniaturization.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés