Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Co-deposition of hole-selective contact and absorber for improving the processability of perovskite solar cells
 
research article

Co-deposition of hole-selective contact and absorber for improving the processability of perovskite solar cells

Zheng, Xiaopeng
•
Li, Zhen
•
Zhang, Yi  
Show more
March 16, 2023
Nature Energy

Simplifying the manufacturing processes of renewable energy technologies is crucial to lowering the barriers to commercialization. In this context, to improve the manufacturability of perovskite solar cells (PSCs), we have developed a one-step solution-coating procedure in which the hole-selective contact and perovskite light absorber spontaneously form, resulting in efficient inverted PSCs. We observed that phosphonic or carboxylic acids, incorporated into perovskite precursor solutions, self-assemble on the indium tin oxide substrate during perovskite film processing. They form a robust self-assembled monolayer as an excellent hole-selective contact while the perovskite crystallizes. Our approach solves wettability issues and simplifies device fabrication, advancing the manufacturability of PSCs. Our PSC devices with positive-intrinsic-negative (p-i-n) geometry show a power conversion efficiency of 24.5% and retain >90% of their initial efficiency after 1,200 h of operating at the maximum power point under continuous illumination. The approach shows good generality as it is compatible with different self-assembled monolayer molecular systems, perovskites, solvents and processing methods.

Improving the manufacturability of perovskite solar cells is key to their deployment. Zheng et al. report a one-step deposition of the hole-selective and absorber layers that addresses wettability issues and simplifies the fabrication process.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés