Publication:

Characterization and modeling of nanoscale MOSFET for ultra-low power RF IC design

cris.lastimport.scopus

2024-08-09T10:34:07Z

cris.legacyId

218534

cris.virtual.author-scopus

7005370402

cris.virtual.department

PH-STI

cris.virtual.parent-organization

EDOC

cris.virtual.parent-organization

ETU

cris.virtual.parent-organization

EPFL

cris.virtual.parent-organization

EPFL

cris.virtual.parent-organization

STI

cris.virtual.parent-organization

EPFL

cris.virtual.parent-organization

IEM

cris.virtual.parent-organization

STI

cris.virtual.parent-organization

EPFL

cris.virtual.sciperId

218800

cris.virtual.sciperId

105059

cris.virtual.unitId

12701

cris.virtual.unitManager

Thiran, Jean-Philippe

cris.virtual.unitManager

Sayed, Ali H.

cris.virtualsource.author-scopus

1d61b8cf-08f6-42d8-ac5b-3d076cce98a5

cris.virtualsource.author-scopus

955eda96-7d9d-4aac-bb02-c3564d306e0a

cris.virtualsource.department

1d61b8cf-08f6-42d8-ac5b-3d076cce98a5

cris.virtualsource.department

955eda96-7d9d-4aac-bb02-c3564d306e0a

cris.virtualsource.orcid

1d61b8cf-08f6-42d8-ac5b-3d076cce98a5

cris.virtualsource.orcid

955eda96-7d9d-4aac-bb02-c3564d306e0a

cris.virtualsource.parent-organization

915196d3-7137-45f6-9504-3515e250bf9c

cris.virtualsource.parent-organization

915196d3-7137-45f6-9504-3515e250bf9c

cris.virtualsource.parent-organization

915196d3-7137-45f6-9504-3515e250bf9c

cris.virtualsource.parent-organization

915196d3-7137-45f6-9504-3515e250bf9c

cris.virtualsource.parent-organization

e241245b-0e63-4d9e-806e-b766e62006ef

cris.virtualsource.parent-organization

e241245b-0e63-4d9e-806e-b766e62006ef

cris.virtualsource.parent-organization

689dafb2-d5f3-47b1-9a40-8c4cf03fd7c8

cris.virtualsource.parent-organization

689dafb2-d5f3-47b1-9a40-8c4cf03fd7c8

cris.virtualsource.parent-organization

689dafb2-d5f3-47b1-9a40-8c4cf03fd7c8

cris.virtualsource.parent-organization

a5e4ea55-8d46-4488-847c-c76354f32105

cris.virtualsource.parent-organization

a5e4ea55-8d46-4488-847c-c76354f32105

cris.virtualsource.parent-organization

a5e4ea55-8d46-4488-847c-c76354f32105

cris.virtualsource.parent-organization

a5e4ea55-8d46-4488-847c-c76354f32105

cris.virtualsource.rid

1d61b8cf-08f6-42d8-ac5b-3d076cce98a5

cris.virtualsource.rid

955eda96-7d9d-4aac-bb02-c3564d306e0a

cris.virtualsource.sciperId

1d61b8cf-08f6-42d8-ac5b-3d076cce98a5

cris.virtualsource.sciperId

955eda96-7d9d-4aac-bb02-c3564d306e0a

cris.virtualsource.unitId

a5e4ea55-8d46-4488-847c-c76354f32105

cris.virtualsource.unitManager

a5e4ea55-8d46-4488-847c-c76354f32105

cris.virtualsource.unitManager

49c3c840-fa98-4487-8d6d-b6cef08ee781

datacite.rights

openaccess

dc.contributor.advisor

Enz, Christian

dc.contributor.author

Chalkiadaki, Maria-Anna

dc.date.accepted

2016

dc.date.accessioned

2016-05-25T10:08:03

dc.date.available

2016-05-25T10:08:03

dc.date.created

2016-05-25

dc.date.issued

2016

dc.date.modified

2025-02-19T14:18:55.975390Z

dc.description.abstract

The evolution and characteristics of the electronics is directly linked to the technological and societal progress. Today, there is a huge variety of electronic solutions offered, with the RF low-power systems, such as wireless sensor networks, wireless body area networks and the Internet of Things (IoT), to gain more and more ground. However, these RF low-power applications set stringent constraints on the power consumption, which complicate even more the already difficult task of the RF IC design. This can be addressed by exploiting the phenomenal RF performance offered by the state-of-the-art nanoscale CMOS technologies, with impressive peak transit frequency at the order of hundreds of GHz, and sub-1 dB minimum noise figure. More specifically, most of the RF applications operate at the low GHz range, so the cut-off frequency surplus, achieved typically in strong-inversion (SI), can be traded-off with a lower power consumption by shifting the operating point to moderate- (MI) or weak-inversion (WI), while keeping the RF performance within the desired specifications. There is an extensive work by the semiconductor community on characterization and modeling the MOS transistor at RF. Nonetheless, most of such studies focus either on the high-performance SI or on rather mature processes with respect to the contemporary state-of-the-art. In this thesis, an extensive and multi-faceted work on detailed characterization and accurate modeling of nanoscale MOSFETs for low-power operation, focusing therefore on subthreshold operation, is presented and discussed. The analysis is always performed under the perspective of the ultra-low power RF IC design. After all, the reliability of the RF IC simulation tools in this high-end range of frequencies and at very low current densities, which constitute the two extreme conditions in terms of operation of the transistor, strongly depends on the accuracy of the model used. The dissertation follows a dual course. First, a simple, yet thorough, small-signal RF model is elaborated in order, to describe analytically the RF performance of nanoscale MOSFETs from SI down to the deep WI region, including its noise behavior. Further, the analytical expressions are used in order to form a step-by-step parameter extraction methodology. Especially, for the extraction of the RF noise model parameters, an innovative step-by-step procedure, which is applied directly on measurements, is developed. Then, a state-of-the-art physics-based compact model (BSIM6) is used. Within this part of the work, a set of novel advancements and contributions are introduced in order for the model to be able to capture the complexity of the behavior of modern advanced CMOS technologies. The results show excellent agreement regarding all different aspects, across all modes of operation (CV, DC, RF performance), even at very low bias conditions. The evaluation of both the modeling approaches is done in detail and uses design oriented tools and metrics, such as the Gm/ID, the Y-parameters, the four RF noise parameters and a wide range of figures-of-merit (FoMs). Finally, a discussion around inversion coefficient (IC) design methodology is carried out, where several FoMs based on IC are modeled with the use of very simple analytical expressions requiring only few parameters. Measurements of advanced 40 nm and 28 nm CMOS technologies are used throughout the thesis to validate all the different modeling approaches.

dc.description.sponsorship

ICLAB

dc.identifier.doi

10.5075/epfl-thesis-7030

dc.identifier.uri

https://infoscience.epfl.ch/handle/20.500.14299/126306

dc.identifier.urn

urn:nbn:ch:bel-epfl-thesis7030-0

dc.language.iso

en

dc.publisher

EPFL

dc.publisher.place

Lausanne

dc.relation

https://infoscience.epfl.ch/record/218534/files/EPFL_TH7030.pdf

dc.size

227

dc.subject

Advanced CMOS

dc.subject

Nanoscale Bulk MOSFET

dc.subject

Low-Power

dc.subject

Analytical Modeling

dc.subject

Compact Modeling

dc.subject

BSIM6

dc.subject

RF Small-Signal

dc.subject

RF Noise

dc.subject

Parameter Extraction

dc.subject

IC Design Methodology

dc.title

Characterization and modeling of nanoscale MOSFET for ultra-low power RF IC design

dc.type

thesis::doctoral thesis

dspace.entity.type

Publication

dspace.legacy.oai-identifier

oai:infoscience.tind.io:218534

epfl.legacy.fileversion

n/a

epfl.legacy.itemtype

Theses

epfl.legacy.submissionform

THESIS

epfl.oai.currentset

fulltext

epfl.oai.currentset

DOI

epfl.oai.currentset

thesis-bn2018

epfl.oai.currentset

STI

epfl.oai.currentset

thesis

epfl.oai.currentset

thesis-bn

epfl.oai.currentset

OpenAIREv4

epfl.publication.version

http://purl.org/coar/version/c_970fb48d4fbd8a85

epfl.thesis.doctoralSchool

EDMI

epfl.thesis.faculty

STI

epfl.thesis.institute

IMT

epfl.thesis.jury

Prof. Pierre-André Farine (président) ; Prof. Christian Enz (directeur de thèse) ; Dr Giovanni Boero, Prof. Andrei Vladimirescu, Dr André Juge (rapporteurs)

epfl.thesis.number

7030

epfl.thesis.originalUnit

ICLAB

epfl.thesis.publicDefenseYear

2016-05-27

epfl.writtenAt

EPFL

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
EPFL_TH7030.pdf
Size:
6.13 MB
Format:
Adobe Portable Document Format
Description:
n/a

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description:

Collections