Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Atoms and quantum dots with a large number of electrons: The ground-state energy
 
research article

Atoms and quantum dots with a large number of electrons: The ground-state energy

Kunz, Herve
•
Rueedi, Rico
2010
Physical Review A

We compute the ground-state energy of atoms and quantum dots with a large number N of electrons. Both systems are described by a nonrelativistic Hamiltonian of electrons in a d-dimensional space. The electrons interact via the Coulomb potential. In the case of atoms (d = 3), the electrons are attracted by the nucleus via the Coulomb potential. In the case of quantum dots (d = 2), the electrons are confined by an external potential, whose shape can be varied. We show that the dominant terms of the ground-state energy are those given by a semiclassical Hartree-exchange energy, whose N -> infinity limit corresponds to Thomas-Fermi theory. This semiclassical Hartree-exchange theory creates oscillations in the ground-state energy as a function of N. These oscillations reflect the dynamics of a classical particle moving in the presence of the Thomas-Fermi potential. The dynamics is regular for atoms and some dots, but in general in the case of dots, the motion contains a chaotic component. We compute the correlation effects. They appear at the order N ln N for atoms, in agreement with available data. For dots, they appear at the order N.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés