Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Validation of an MCNP4B whole-reactor model for LWR-PROTEUS using ENDF/B-V, ENDF/B-VI, and JEF-2.2 cross-section libraries
 
research article

Validation of an MCNP4B whole-reactor model for LWR-PROTEUS using ENDF/B-V, ENDF/B-VI, and JEF-2.2 cross-section libraries

Joneja, O. P.
•
Plaschy, M.
•
Jatuff, F.
Show more
2001
Annals of Nuclear Energy

A detailed three-dimensional, continuous-energy MCNP4B model of the LWR-PROTEUS critical facility has been developed for the analysis of whole-reactor characteristics using ENDF/B-V, ENDF/B-VI and JEF-2.2 cross-section sets. The model has been applied to the determination of the critical loading, as well as the evaluation of reactivity worths for safety/shutdown rods, control rods, and individual driver-region fuel rods. The initially obtained results for the first configuration investigated (Core 1B) indicated that, for the same geometrical and materials specifications, the ENDF/B-V data library yields the closest critical prediction (discrepancy of 64040 pcm), followed by ENDF/B-VI (98040 pcm) and JEF-2.2 (134040 pcm). The differences in results between the three data libraries were studied by considering the contributions of individual materials to the neutron balance. 235U and 238Pu cross-sections from JEF-2.2, for example, explain an effect of ~400 pcm. Refinement of the materials specifications in the MCNP4B whole-reactor model, in particular the impurities assumed for the graphite driver of the driver and reflector regions, has been shown to reduce the final discrepancy of the ENDF/B-V based keff result to ~0.2%. The MCNP4B results for relative reactivity effects, such as control rod worths, are found to agree within experimental errors with the measured values

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés