Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Learning Graph Influence From Social Interactions
 
conference paper

Learning Graph Influence From Social Interactions

Matta, Vincenzo
•
Bordignon, Virginia  
•
Santos, Augusto  
Show more
January 1, 2020
2020 Ieee International Conference On Acoustics, Speech, And Signal Processing
IEEE International Conference on Acoustics, Speech, and Signal Processing

In social learning, agents form their opinions or beliefs about certain hypotheses by exchanging local information. This work considers the recent paradigm of weak graphs, where the network is partitioned into sending and receiving components, with the former having the possibility of exerting a domineering effect on the latter. Such graph structures are prevalent over social platforms. We will not be focusing on the direct social learning problem (which examines what agents learn), but rather on the dual or reverse learning problem (which examines how agents learned). Specifically, from observations of the stream of beliefs at certain agents, we would like to examine whether it is possible to learn the strength of the connections (influences) from sending components in the network to these receiving agents.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés