Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Unsupervised Identification and Prediction of Foothold Robustness
 
conference paper

Unsupervised Identification and Prediction of Foothold Robustness

Hoepflinger, Markus A.
•
Hutter, Marco
•
Gehring, Christian
Show more
2013
2013 IEEE International Conference on Robotics and Automation
IEEE International Conference on Robotics and Automation (ICRA)

This paper addresses the problem of evaluating and estimating the mechanical robustness of footholds for legged robots in unstructured terrain. In contrast to approaches that rely on human expert knowledge or human defined criteria to identify appropriate footholds, our method uses the robot itself to assess whether a certain foothold is adequate or not. To this end, one of the robot’s legs is employed to haptically explore an unknown foothold. The robustness of the foothold is defined by a simple metric as a function of the achievable ground reaction forces. This haptic feedback is associated with the foothold shape to estimate the robustness of untouched footholds. The underlying shape clustering principles are tested on synthetic data and in hardware experiments using a single-leg testbed.

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés