Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Colloidal-ALD Grown Hybrid Shells Nucleate via a Ligand–Precursor Complex
 
research article

Colloidal-ALD Grown Hybrid Shells Nucleate via a Ligand–Precursor Complex

Segura Lecina, Ona  
•
Hope, Michael Allan  
•
Venkatesh, Amrit  
Show more
2022
Journal of the American Chemical Society

Colloidal atomic layer deposition (c-ALD) enables the growth of hybrid organic/inorganic oxide shells with tunable thickness at the nanometer scale around ligand-functionalized inorganic nanoparticles (NPs). This recently developed method has demonstrated improved stability of NPs and of their dispersions, a key requirement for their application. Nevertheless, the mechanism by which the inorganic shells forms is still unknown, as is the nature of the multiple complex interfaces between the NPs, the organic ligands functionalizing the surface, and the shell. Here, we demonstrate that carboxylate ligands are the key element that enables the synthesis of these core–shell structures. Dynamic nuclear polarization surface enhanced nuclear magnetic resonance spectroscopy (DNP SENS) in combination with density functional theory (DFT) structure calculations show that the addition of the aluminum organometallic precursor forms a ligand–precursor complex that interacts with the NP surface. This ligand–precursor complex is the first step for the nucleation of the shell and enables its further growth.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

MS-v9-Final.pdf

Type

Preprint

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

License Condition

n/a

Size

2.44 MB

Format

Adobe PDF

Checksum (MD5)

1bdee57e022ea4e56aaa883a2bf42a49

Loading...
Thumbnail Image
Name

SI-v9-Final.pdf

Type

Preprint

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

License Condition

n/a

Size

3.45 MB

Format

Adobe PDF

Checksum (MD5)

ab58c4d346d24d15586b3641f57dbb72

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés