Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Self-heating Effects in RF Region of FDSOI MOSFETs at Cryogenic Temperatures
 
research article

Self-heating Effects in RF Region of FDSOI MOSFETs at Cryogenic Temperatures

Han, Hung-Chi  
•
Charbon, Edoardo  
•
Enz, Christian  
2025
IEEE Journal of the Electron Devices Society

Radio-frequency (RF) circuits are crucial to qubit manipulation, for which transistor self-heating effects may influence performance and possibly change the quantum state. This paper presents an analytical RF model of FDSOI MOSFETs considering dynamic self-heating effects down to 3.3 K for the first time. Parameter extraction involves analytical calculation and optimization using the iteratively re-weighted least squares (IRLS) and Monte Carlo methods. The temperature rise is estimated by capturing the correlation between thermal resistance and device temperature. This work provides a method for modeling FDSOI RF performance and for analyzing dynamic self-heating effects at cryogenic temperatures.

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés