Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Towards Recognizing Feature Points using Classification Trees
 
report

Towards Recognizing Feature Points using Classification Trees

Lepetit, Vincent  
•
Fua, Pascal  
2004

In earlier work~\cite{Lepetit04b}, we proposed to treat wide baseline matching of feature points as a classification problem and proposed an implementation based on K-means and nearest neighbor classification. We showed that this method is both reliable and faster than competing methods, but still too slow for real-time implementations. Here we show that using decision trees instead speeds up the computation greatly, while increasing the robustness. This allows point matching under large viewpoint and illumination changes that is suitable for accurate object pose estimation at 25 Hz on a standard Pentium IV PC. Most of the previous methods rely either on using {\em ad hoc} local descriptors or on estimating local affine deformations. By contrast, we treat wide baseline matching of keypoints as a classification problem, in which each class corresponds to the set of all possible views of such a point. Given one or more images of a target object, we train the system by synthesizing a large number of views of individual keypoints and by using statistical classification tools to produce a compact description of this {\it view set}. At run-time, we rely on this description to decide to which class, if any, an observed feature belongs. This formulation allows us to use decision trees to reduce matching error rates, and to move some of the computational burden from matching to training, which can be performed beforehand. We will show that our method is both reliable and fast enough to detect and estimate in real-time the 3D pose of an object in the presence of occlusions, illumination changes, and cluttered backgrounds.

  • Files
  • Details
  • Metrics
Type
report
Author(s)
Lepetit, Vincent  
Fua, Pascal  
Date Issued

2004

Subjects

Computer Vision

•

3D Object Detection

•

3D Object Tracking

•

Real-time

Written at

EPFL

EPFL units
CVLAB  
Available on Infoscience
July 13, 2005
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/214710
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés