Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Towards scalable physically consistent neural networks: An application to data-driven multi-zone thermal building models
 
research article

Towards scalable physically consistent neural networks: An application to data-driven multi-zone thermal building models

Di Natale, L.  
•
Svetozarevic, B.
•
Heer, P.
Show more
April 5, 2023
Applied Energy
  • Files
  • Details
  • Metrics
Type
research article
DOI
10.1016/j.apenergy.2023.121071
Author(s)
Di Natale, L.  
Svetozarevic, B.
Heer, P.
Jones, Colin  
Date Issued

2023-04-05

Published in
Applied Energy
Volume

340

Article Number

121071

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LA3  
Available on Infoscience
April 11, 2023
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/196900
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés