Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Formation of High-Performance Multi-Cation Halide Perovskites Photovoltaics by delta-CsPbI3/delta-RbPbI3 Seed-Assisted Heterogeneous Nucleation
 
research article

Formation of High-Performance Multi-Cation Halide Perovskites Photovoltaics by delta-CsPbI3/delta-RbPbI3 Seed-Assisted Heterogeneous Nucleation

Alharbi, Essa A.  
•
Baumeler, Thomas P.  
•
Krishna, Anurag  
Show more
March 15, 2021
Advanced Energy Materials

The performance of perovskite solar cells is highly dependent on the fabrication method; thus, controlling the growth mechanism of perovskite crystals is a promising way towards increasing their efficiency and stability. Herein, a multi-cation halide composition of perovskite solar cells is engineered via the two-step sequential deposition method. Strikingly, it is found that adding mixtures of 1D polymorphs of orthorhombic delta-RbPbI3 and delta-CsPbI3 to the PbI2 precursor solution induces the formation of porous mesostructured hexagonal films. This porosity greatly facilitates the heterogeneous nucleation and the penetration of FA (formamidinium)/MA (methylammonium) cations within the PbI2 film. Thus, the subsequent conversion of PbI2 into the desired multication cubic alpha-structure by exposing it to a solution of formamidinium methylammonium halides is greatly enhanced. During the conversion step, the delta-CsPbI3 also is fully integrated into the 3D mixed cation perovskite lattice, which exhibits high crystallinity and superior optoelectronic properties. The champion device shows a power conversion efficiency (PCE) over 22%. Furthermore, these devices exhibit enhanced operational stability, with the best device retaining more than 90% of its initial value of PCE under 1 Sun illumination with maximum power point tracking for 400 h.

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés