Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Oxidation of arsenite by Agrobacterium albertimagni, AOL15, sp. nov., isolated from Hot Creek, California
 
research article

Oxidation of arsenite by Agrobacterium albertimagni, AOL15, sp. nov., isolated from Hot Creek, California

Salmassi, T.M.
•
Venkateswaren, K.
•
Satomi, M.
Show more
2002
Geomicrobiology Journal

An arsenite-oxidizing bacterium, Agrobacterium albertimagni strain AOL15 (ATCC BAA-24), was isolated from the surface of aquatic macrophytes collected in Hot Creek, California. Under laboratory conditions, whole cell suspensions of AOL15 oxidized arsenite with a Ks of 3.4 ± 2.2 μM and a Vmax of 1.81 ± 0.58 × 10-12 μmole · cell-1 · min-1 (or 0.043 ± 0.017 μmole · mg protein-1 · min-1). The Ks value for AOL15 is the lowest value to date reported for whole cell suspensions and is comparable to ambient concentrations of arsenic of 2.7 μM reported for Hot Creek, indicating that AOL15 can oxidize arsenite under ambient conditions. Previous studies at this site revealed a rapid in situ oxidation of geothermally-derived arsenite while field incubation studies demonstrated that this oxidation was bacterially mediated. The isolation of the arsenite oxidizer AOL15 from this environment supports these previous observations. Arsenite does not support chemolithoautotrophic growth of AOL15 and toxicity studies with AOL15 showed that arsenite (at 5 mM) is toxic to AOL15, yet arsenate concentrations as high as 50 mM do not show any toxic effects. These results suggest that the oxidation of arsenite by AOL15 is a detoxification mechanism.

  • Details
  • Metrics
Type
research article
DOI
10.1080/014904502317246165
Scopus ID

2-s2.0-0036184675

Author(s)
Salmassi, T.M.
Venkateswaren, K.
Satomi, M.
Nealson, K.H.
Newman, D.K.
Hering, J.G.  
Date Issued

2002

Published in
Geomicrobiology Journal
Volume

19

Issue

1

Start page

53

End page

66

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
UPHCE  
Available on Infoscience
November 25, 2010
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/58675
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés