Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Null energy constraints on two-dimensional RG flows
 
research article

Null energy constraints on two-dimensional RG flows

Hartman, Thomas
•
Mathys, Gregoire  
January 19, 2024
Journal of High Energy Physics

We study applications of spectral positivity and the averaged null energy condition (ANEC) to renormalization group (RG) flows in two-dimensional quantum field theory. We find a succinct new proof of the Zamolodchikov c-theorem, and derive further independent constraints along the flow. In particular, we identify a natural C-function that is a completely monotonic function of scale, meaning its derivatives satisfy the alternating inequalities (-1)nC(n)(mu 2) >= 0. The completely monotonic C-function is identical to the Zamolodchikov C-function at the endpoints, but differs along the RG flow. In addition, we apply Lorentzian techniques that we developed recently to study anomalies and RG flows in four dimensions, and show that the Zamolodchikov c-theorem can be restated as a Lorentzian sum rule relating the change in the central charge to the average null energy. This establishes that the ANEC implies the c-theorem in two dimensions, and provides a second, simpler example of the Lorentzian sum rule.

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés