Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A molecularly engineered hole-​transporting material for efficient perovskite solar cells
 
research article

A molecularly engineered hole-​transporting material for efficient perovskite solar cells

Saliba, Michael  
•
Orlandi, Simonetta
•
Matsui, Taisuke
Show more
2016
Nature Energy

Soln.-​processable perovskite solar cells have recently achieved certified power conversion efficiencies of over 20​%, challenging the long-​standing perception that high efficiencies must come at high costs. One major bottleneck for increasing the efficiency even further is the lack of suitable hole-​transporting materials, which ext. pos. charges from the active light absorber and transmit them to the electrode. In this work, we present a molecularly engineered hole-​transport material with a simple dissym. fluorene-​dithiophene (FDT) core substituted by N,​N-​di-​p-​methoxyphenylamine donor groups, which can be easily modified, providing the blueprint for a family of potentially low-​cost hole-​transport materials. We use FDT on state-​of-​the-​art devices and achieve power conversion efficiencies of 20.2​% which compare favorably with control devices with 2,​2',​7,​7'-​tetrakis(N,​N-​di-​p-​methoxyphenylamine)​-​9,​9'-​spirobifluorene (spiro-​OMeTAD)​. Thus, this new hole transporter has the potential to replace spiro-​OMeTAD.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés