Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. Interaction sol-structure dans le domaine des ponts intégraux
 
doctoral thesis

Interaction sol-structure dans le domaine des ponts intégraux

Dreier, Damien  
2010

Over the past decades, an increasing number of integral bridges have been built. This type of bridge offers various advantages in comparison with standard bridges equipped with expansion joints and bearings. In particular, integral bridges require less maintenance since they have less mechanical elements. Therefore, cost of retrofitting and indirect costs such as time spent by users during the maintenance works is reduced. Moreover, the static efficiency is increased and the noise of circulation during its lifetime is reduced. However, for the design and analysis of this kind of structure, the soil-structure interaction needs to be investigated to take in account the monolithic behaviour of the bridge with the embankment near the abutment and the piers with the foundation. This interaction is complex and further research is needed. The report begins by a general introduction of the topic. Thereafter a brief description of the state-of-the-art on integral bridges is presented, as well as the main difficulties faced during design and the main actions that need to be considered. Limit states and numerical analysis on integral abutments and pier on shallow foundations are discussed towards a better understanding of the structural behaviour in order to improve current detailing and design practice. The study of integral abutments shows that soil-structure interaction should be considered at early stages of the design process. This allows introducing small geometric adaptations to improve detailing which in turn allows significantly increasing the long term performance of the integral abutment without a sensible increase of building costs. This set of new rules can further be applied to both new and existing bridges which require retrofitting of the expansion joints at the abutments. The study of the cracking limit state of piers shows the strong influence of the geometry of the shallow foundations on the soil-structure interaction. This two studies show that geometric adaptation in combination with accurate soil-structure modeling could lead to an increase of the current Swiss limit length for integral bridges which is now set at fixed to 60m.

  • Files
  • Details
  • Metrics
Type
doctoral thesis
DOI
10.5075/epfl-thesis-4880
Author(s)
Dreier, Damien  
Advisors
Muttoni, Aurelio  
Date Issued

2010

Publisher

EPFL

Publisher place

Lausanne

Thesis number

4880

Total of pages

225

Subjects

integral bridges

•

semi-integral bridges

•

end of bridge

•

integral abutment

•

semi-integral abutment

•

transition slab

•

bridge pier

•

shallow foundation

•

soil-structure interaction

•

durability

•

serviceability limit state

•

conceptual design

•

pont intégral

•

pont semi-intégral

•

extrémité de pont

•

culée intégrale

•

culée semi-intégrale

•

dalle de transition

•

pile de pont

•

fondation superficielle

•

interaction sol-structure

•

durabilité

•

aptitude au service

•

choix conceptuel

EPFL units
IBETON  
Faculty
ENAC  
School
IIC  
Doctoral School
EDST  
Available on Infoscience
September 23, 2010
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/54070
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés