Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A combined 32‐channel receive‐loops/8‐channel transmit‐dipoles coil array for whole‐brain MR imaging at 7T
 
research article

A combined 32‐channel receive‐loops/8‐channel transmit‐dipoles coil array for whole‐brain MR imaging at 7T

Clément, Jérémie  
•
Gruetter, Rolf  
•
Ipek, Özlem  
2019
Magnetic Resonance in Medicine

Purpose Multichannel receive arrays provide high SNR and parallel‐imaging capabilities, while transmit‐only dipole arrays have been shown to achieve a large coverage of the whole‐brain including the cerebellum. The aim of this study was to develop and characterize the performances of a 32‐channel receive‐only loop array combined with an 8‐channel dipole coil array at 7T for the first time. Methods The 8Tx‐dipoles/32Rx‐loops coil array was characterized by the SNR, g‐factors, noise correlation matrix, accelerated image quality, and urn:x-wiley:07403194:media:mrm27808:mrm27808-math-0003 maps, and compared with a commercial 1Tx‐birdcage/32Rx‐loops array. Simulated and measured urn:x-wiley:07403194:media:mrm27808:mrm27808-math-0004 maps were shown for the 8Tx‐dipoles/32Rx‐loops coil array and compared with the 8Tx/Rx dipole array. Results The in‐house built 32‐channel receive coil demonstrated a large longitudinal coverage of the brain, particularly the upper neck area. G‐factors and accelerated MR acquisitions demonstrated robust performances up to R = 4 in 2D, and R = 8 (4 × 2) in 3D. A 83% increase in SNR was measured over the cerebellum with the in‐house built 8Tx/32Rx coil array compared to the commercial 1Tx/32Rx, while similar performances were obtained in the cerebral cortex. Conclusions The combined 32‐channel receive/8‐channel transmit coil array demonstrated high transmit‐receive performances compared to the commercial receive array at 7T, notably in the cerebellum. We conclude that in combination with parallel transmit capabilities, this coil is particularly suitable for whole‐brain MR studies at 7T.

  • Files
  • Details
  • Metrics
Type
research article
DOI
10.1002/mrm.27808
Author(s)
Clément, Jérémie  
Gruetter, Rolf  
Ipek, Özlem  
Date Issued

2019

Publisher

Wiley

Published in
Magnetic Resonance in Medicine
Volume

82

Issue

3

Start page

1229

End page

1241

Subjects

CIBM-AIT

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
CIBM  
LIFMET  
Available on Infoscience
May 13, 2019
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/156393
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés