Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Photoelectrochemical Oxygen Evolution on Mesoporous Hematite Films Prepared from Maghemite Nanoparticles
 
research article

Photoelectrochemical Oxygen Evolution on Mesoporous Hematite Films Prepared from Maghemite Nanoparticles

Verissimo, N. C.
•
Ren, D.
•
Kleiner, C. C. C.
Show more
May 1, 2022
Journal Of The Electrochemical Society

Iron oxides, especially hematite (alpha-Fe2O3), a are promising materials for applications in photoelectrochemical cells and photo-redox catalysis. However, realizing high-performance hematite photoanodes via an environmentally-friendly route remains a great challenge. In this work, we employed a novel approach to prepare mesoscopic hematite photoelectrodes with remarkable performance for water oxidation. Hydrothermally-synthesized maghemite nanoparticles of high crystallinity with a mean particle size of 3.3 nm were deposited onto fluorine doped tin oxide (FTO) transparent conducting glass substrates, followed by heat treatment to convert them into a homogeneous mesoporous hematite layer. A hematite photoanode with a thickness of 220 nm, delivered a maximum photocurrent density of 1.8 mA cm(-2) for water oxidation to oxygen at 1.23 V-RHE under simulated AM 1.5 irradiation. Upon treating the surface of the hematite photoelectrode with Co(II) cations the photocurrent density nearly doubled at the same potential to 3.32 mA cm(-2) placing our new photoelectrode among the best hematite-based photocatalysts for visible light induced water splitting. Further photoelectrochemical analysis provided insights into the factors boosting the performance of the hematite photoanode. (C) 2022 The Electrochemical Society ("ECS"). Published on behalf of ECS by IOP Publishing Limited.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Verissimo_2022_J._Electrochem._Soc._169_056522.pdf

Type

Publisher

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

copyright

Size

1.61 MB

Format

Adobe PDF

Checksum (MD5)

14b0d3f90c61e25afdf3dd12ff5cff26

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés