Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Preprints and Working Papers
  4. Molecular chaperones inject energy from ATP hydrolysis into the non-equilibrium stabilisation of native proteins
 
preprint

Molecular chaperones inject energy from ATP hydrolysis into the non-equilibrium stabilisation of native proteins

Goloubinoff, Pierre
•
Sassi, Alberto Stefano  
•
Fauvet, Bruno
Show more
2017

Protein homeostasis, namely the ensemble of cellular mechanisms collectively controlling the activity, stability and conformational states of proteins, depends on energy-consuming processes. De novo protein synthesis requires ATP hydrolysis for peptide bond formation. Controlled degradation by the chaperone-gated proteases requires ATP hydrolysis to unfold target proteins and render their peptide bonds accessible to hydrolysis. During and following translation, different classes of molecular chaperones require ATP hydrolysis to control the conformational state of proteins, favor their folding into their active conformation and avoid, under stress, their conversion into potentially harmful aggregates. Furthermore, specific ATP-fueled unfolding chaperones can dynamically revert aggregation itself. We used here various biochemical assays and physical modeling to show that both bacterial chaperones GroEL (HSP60) and DnaK (HSP70) can use the energy liberated by ATP hydrolysis to maintain proteins in their active state even under conditions that do not favor, thermodynamically, the native state. The energy from ATP hydrolysis is thus injected by the chaperones in the system and converted into an enhanced, non-equilibrium steady-state stabilization of the native state of their substrates. Upon ATP consumption, the chaperone substrates spontaneously revert to their equilibrium non-native state.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

146852.full.pd.pdf

Type

Preprint

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

Size

1.38 MB

Format

Adobe PDF

Checksum (MD5)

a086d5f7e523bc9aae15b56e9971bd0d

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés