Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Dielectric properties of 3-3 flexible composites by infiltration of elastomers into porous ceramic structures using cellulose scaffold
 
research article

Dielectric properties of 3-3 flexible composites by infiltration of elastomers into porous ceramic structures using cellulose scaffold

Levy, Ivana K.
•
Owussu, Francis
•
Geiger, Thomas
Show more
November 5, 2022
European Polymer Journal

Elastomer composites are prepared by infiltrating polydimethylsiloxane (PDMS) into a porous ceramic structure of nanoparticles. This method differs from the conventional approach, where particles are dispersed into the polymer matrix, since here, the polymer is incorporated into a pre-sintered structure of nanoparticles by infil-tration under vacuum. Several oxides (CoFe2O4, ZnO, BaTiO3, BiFeO3, and BiFeO3 doped with yttrium), commonly used for dielectric and piezoelectric devices, were infiltrated by PDMS. The porous 3D structure of nanoparticles is obtained by using cellulose as a scaffold and binder, which is eliminated during the process. Thus, the so-called (3,3) composites are obtained, where the particles are in direct contact (although immersed in the polymer), at relatively low loading. The dielectric behaviour of the infiltrated and conventional composites is determined by impedance spectroscopy, dielectric polarization analysis, determinations of electric breakdown -field (EBD), and static dielectric constant (es). The percentage increase of es from conventional to infiltrated composites is remarkable, reaching for BiFeO3-Y, an increase of es and e '(omega) larger than 600 %, while EBD de-creases by a factor of 3.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés