Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Randomized Trees for Real-Time Keypoint Recognition
 
report

Randomized Trees for Real-Time Keypoint Recognition

Lepetit, Vincent  
•
Lagger, Pascal
•
Fua, Pascal  
2004

In earlier work, we proposed treating wide baseline matching of feature points as a classification problem, in which each class corresponds to the set of all possible views of such a point. We used a K-mean plus Nearest Neighbor classifier to validate our approach, mostly because it was simple to implement. It has proved effective but still too slow for real-time use. In this paper, we advocate instead the use of randomized trees as the classification technique. It is both fast enough for real-time performance and more robust. It also gives us a principled way not only to match keypoints but to select during a training phase those that are the most recognizable ones. This results in a real-time system able to detect and position in 3D planar, non-planar, and even deformable objects. It is robust to illuminations changes, scale changes and occlusions. We will propose to give a live demonstration of our system at the conference itself.

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés