Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Aerolysin, a Powerful Protein Sensor for Fundamental Studies and Development of Upcoming Applications
 
review article

Aerolysin, a Powerful Protein Sensor for Fundamental Studies and Development of Upcoming Applications

Cressiot, Benjamin
•
Ouldali, Hadjer
•
Pastoriza-Gallego, Manuela
Show more
March 1, 2019
Acs Sensors

The nanopore electrical approach is a breakthrough in single molecular level detection of particles as small as ions, and complex as biomolecules. This technique can be used for molecule analysis and characterization as well as for the understanding of confined medium dynamics in chemical or biological reactions. Altogether, the information obtained from these kinds of experiments will allow us to address challenges in a variety of biological fields. The sensing, design, and manufacture of nanopores is crucial to realize these objectives. For some time now, aerolysin, a pore forming toxin, and its mutants have shown high potential in real time analytical chemistry, size discrimination of neutral polymers, oligosaccharides, oligonucleotides and peptides at monomeric resolution, sequence identification, chemical modification on DNA, potential biomarkers detection, and protein folding analysis. This review focuses on the results obtained with aerolysin nanopores on the fields of chemistry, biology, physics, and biotechnology. We discuss and compare as well the results obtained with other protein channel sensors.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés