Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Consistent Tomography Under Partial Observations Over Adaptive Networks
 
research article

Consistent Tomography Under Partial Observations Over Adaptive Networks

Matta, Vincenzo
•
Sayed, Ali H.  
January 1, 2019
Ieee Transactions On Information Theory

This paper studies the problem of inferring whether an agent is directly influenced by another agent over a network. Agent i influences agent j if they are connected (according to the network topology), and if agent j uses the data from agent i to update its online learning algorithm. The solution of this inference task is challenging for two main reasons. First, only the output of the learning algorithm is available to the external observer that must perform the inference based on these indirect measurements. Second, only output measurements from a fraction of the network agents is available, with the total number of agents itself being also unknown. The main focus of this paper is ascertaining under these demanding conditions whether consistent tomography is possible, namely, whether it is possible to reconstruct the interaction profile of the observable portion of the network, with negligible error as the network size increases. We establish a critical achievability result, namely, that for symmetric combination policies and for any given fraction of observable agents, the interacting and non-interacting agent pairs split into two separate clusters as the network size increases. This remarkable property then enables the application of clustering algorithms to identify the interacting agents influencing the observations. We provide a set of numerical experiments that verify the results for finite network sizes and time horizons. The numerical experiments show that the results hold for asymmetric combination policies as well, which is particularly relevant in the context of causation.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés