Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Computational study of drug binding to the membrane-bound tetrameric M2 peptide bundle from influenza A virus
 
research article

Computational study of drug binding to the membrane-bound tetrameric M2 peptide bundle from influenza A virus

Khurana, Ekta
•
Devane, Russell H.
•
Peraro, Matteo Dal  
Show more
2011
Biochimica et Biophysica Acta (BBA) - Biomembranes

The M2 protein of influenza A virus performs the crucial function of transporting protons to the interior of virions enclosed in the endosome. Adamantane drugs, amantadine (AMN) and rimantidine (RMN), block the proton conduction in some strains, and have been used for the treatment and prophylaxis of influenza A infections. The structures of the transmembrane (TM) region of M2 that have been solved in micelles using NMR (residues 23-60) (Schnell and Chou, 2008) and by X-ray crystallography (residues 22-46) (Stouffer et al., 2008) suggest different drug binding sites: external and internal for RMN and AMN, respectively. We have used molecular dynamics (MD) simulations to investigate the nature of the binding site and binding mode of adamantane drugs on the membrane-bound tetrameric M2-TM peptide bundles using as initial conformations the low-pH AMN-bound crystal structure, a high-pH model derived from the drug-free crystal structure, and the high-pH NMR structure. The MD simulations indicate that under both low- and high-pH conditions, AMN is stable inside the tetrameric bundle, spanning the region between residues Val27 to Gly34. At low pH the polar group of AMN is oriented toward the His37 gate, while under high-pH conditions its orientation exhibits large fluctuations. The present MD simulations also suggest that AMN and RMN molecules do not show strong affinity to the external binding sites. (C) 2010 Elsevier B.V. All rights reserved.

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.bbamem.2010.03.025
Web of Science ID

WOS:000286681700005

Author(s)
Khurana, Ekta
Devane, Russell H.
Peraro, Matteo Dal  
Klein, Michael L.
Date Issued

2011

Published in
Biochimica et Biophysica Acta (BBA) - Biomembranes
Volume

1808

Issue

2

Start page

530

End page

537

Subjects

Molecular dynamics

•

Simulations

•

Amantadine

•

Adamantane

•

Transmembrane

•

Ion channel

•

M-2 Proton Channel

•

Particle Mesh Ewald

•

Ion-Channel

•

Molecular-Dynamics

•

Amantadine Binding

•

Lipid-Bilayers

•

Antiviral Drug

•

Mechanism

•

Inhibition

•

Resistance

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
UPDALPE  
Available on Infoscience
August 6, 2010
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/52068
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés