Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Anomalous Dissipation and Lack of Selection in the Obukhov-Corrsin Theory of Scalar Turbulence
 
research article

Anomalous Dissipation and Lack of Selection in the Obukhov-Corrsin Theory of Scalar Turbulence

Colombo, Maria  
•
Crippa, Gianluca
•
Sorella, Massimo  
December 1, 2023
Annals Of Pde

The Obukhov-Corrsin theory of scalar turbulence [21, 54] advances quantitative predictions on passive-scalar advection in a turbulent regime and can be regarded as the analogue for passive scalars of Kolmogorov's K41 theory of fully developed turbulence [47]. The scaling analysis of Obukhov and Corrsin from 1949 to 1951 identifies a critical regularity threshold for the advection-diffusion equation and predicts anomalous dissipation in the limit of vanishing diffusivity in the supercritical regime. In this paper we provide a fully rigorous mathematical validation of this prediction by constructing a velocity field and an initial datum such that the unique bounded solution of the advection-diffusion equation is bounded uniformly-in-diffusivity within any fixed supercritical Obukhov-Corrsin regularity regime while also exhibiting anomalous dissipation. Our approach relies on a fine quantitative analysis of the interaction between the spatial scale of the solution and the scale of the Brownian motion which represents diffusion in a stochastic Lagrangian setting. This provides a direct Lagrangian approach to anomalous dissipation which is fundamental in order to get detailed insight on the behavior of the solution. Exploiting further this approach, we also show that for a velocity field in C-alpha of space and time (for an arbitrary 0 <= alpha < 1) neither vanishing diffusivity nor regularization by convolution provide a selection criterion for bounded solutions of the advection equation. This is motivated by the fundamental open problem of the selection of solutions of the Euler equations as vanishing-viscosity limit of solutions of the Navier-Stokes equations and provides a complete negative answer in the case of passive advection.

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés