Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. A DC power flow extension
 
conference paper

A DC power flow extension

Kyriakidis, Theodoros
•
Cherkaoui, Rachid  
•
Kayal, Maher
2013
IEEE PES ISGT Europe 2013
2013 4th IEEE/PES Innovative Smart Grid Technologies Europe (ISGT EUROPE)

In this work an extension of the well-known DC power flow method is presented. A normal DC power flow of the system is executed to determine voltage angles and a novel derivation of voltage amplitudes is devised. The latter is rigorously formulated and eight alternative ways to tackle it are proposed. Comparative studies between the proposed versions of the algorithm verify its effectiveness in producing an accurate estimate of the voltage profile, on average in the order of 10-3 pu close to the exact solution. The proposed algorithm features very favorable computational requirements of approximately a fifth of the time required for an exact solution. Its computational efficiency renders it a solid candidate for hard real-time applications required in the emerging smart grid.

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés