Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. A Neuromuscular Model for Symbiotic Man-Machine Exoskeleton Control Accounting for Patient Impairment Specificity
 
conference paper

A Neuromuscular Model for Symbiotic Man-Machine Exoskeleton Control Accounting for Patient Impairment Specificity

Dzeladini, Florin  
•
Pennycott, Andrew
•
Ijspeert, Auke  
Show more
September 15, 2014
Proceedings of Werob 2014, The International Workshop on Wearable Robotics
Werob 2014, The International Workshop on Wearable Robotics

Millions of people worldwide live with impaired locomotion. The degree of impairment is highly variable and the causes are multiple. This variation necessitates the design of a new generation of exoskeleton controllers for personalised, symbiotic man-machine interaction. One of the characteristics of such a controller is the ability to realistically include the characteristics of both normal and neurologically impaired human locomotion. The information can be used to recover only the relevant missing features of locomotion. In this paper, we describe the main characterisation tools used to describe human movement and discuss possible ways to include the resulting information in a neuromuscular model in order to create a personalised controller for a wearable exoskeleton.

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés