Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A general and robust Ni-based nanocatalyst for selective hydrogenation reactions at low temperature and pressure
 
research article

A general and robust Ni-based nanocatalyst for selective hydrogenation reactions at low temperature and pressure

Hu, Yue
•
Liu, Mingyang  
•
Bartling, Stephan
Show more
December 1, 2023
Science Advances

Catalytic hydrogenations are important and widely applied processes for the reduction of organic compounds both in academic laboratories and in industry. To perform these reactions in sustainable and practical manner, the development and applicability of non-noble metal-based heterogeneous catalysts is crucial. Here, we report highly active and air-stable nickel nanoparticles supported on mesoporous silica (MCM-41) as a general and selective hydrogenation catalyst. This catalytic system allows for the hydrogenation of carbonyl compounds, nitroarenes, N-heterocycles, and unsaturated carboncarbon bonds in good to excellent selectivity under very mild conditions (room temperature to 80(degrees)C, 2 to 10 bar H-2). Furthermore, the optimal nickel/meso-silicon dioxide catalyst is reusable (4 cycles) without loss of its catalytic activity.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés