Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Learning Decoupled Representations for Human Pose Forecasting
 
conference paper

Learning Decoupled Representations for Human Pose Forecasting

Parsaeifard, Behnam
•
Saadatnejad, Saeed  
•
Liu, Yuejiang  
Show more
2021
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops
2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCV 2021)

Human pose forecasting involves complex spatiotemporal interactions between body parts (e.g., arms, legs, spine). State-of-the-art approaches use Long Short-Term Memories (LSTMs) or Variational AutoEncoders (VAEs) to solve the problem. Yet, they do not effectively predict human motions when both global trajectory and local pose movements exist. We propose to learn decoupled representations for the global and local pose forecasting tasks. We also show that it is better to stop the prediction when the uncertainty in human motion increases. Our forecasting model outperforms all existing methods on the pose forecasting benchmark to date by over 20%. The code is available online: https://github.com/vita-epfl/decoupled-pose-prediction

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés