Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Variable amplitude fatigue of adhesively-bonded pultruded GFRP joints
 
Loading...
Thumbnail Image
research article

Variable amplitude fatigue of adhesively-bonded pultruded GFRP joints

Sarfaraz, Roohollah  
•
Vassilopoulos, Anastasios P.  
•
Keller, Thomas  
2013
International Journal of Fatigue

The fatigue behavior of adhesively-bonded pultruded GFRP joints subjected to variable amplitude loading patterns was experimentally investigated. The failure mode of the examined joints was found to be similar to that under constant amplitude loading. The acceleration or retardation of the crack propagation rate due to the load interaction effects was thoroughly investigated by monitoring crack propagation during the variable amplitude loading. The fatigue life of the joints was predicted using classic fatigue life prediction methodology. Existing models for characterizing the fatigue behavior of the examined joints were employed together with the linear Palmgren-Miner's rule for the prediction of fatigue life. A simple modification was incorporated into the applied methodology to take into account the load interaction effects introduced under the variable amplitude loading. Comparison of the life predictions to experimental data proved that the introduced modification can significantly improve the accuracy of the classic life prediction methodology. (c) 2013 Elsevier Ltd. All rights reserved.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés